Skip to contents

Confirmatory M2PL Analysis

Usage

C2PL_gvem(u, indic, max.iter = 5000, SE.est = FALSE)

Arguments

u

an \(N \times J\) matrix or a data.frame that consists of binary responses of \(N\) individuals to \(J\) items. The missing values are coded as NA

indic

a \(J \times K\) matrix or a data.frame that describes the factor loading structure of \(J\) items to \(K\) factors. It consists of binary values where 0 refers to the item is irrelevant with this factor, 1 otherwise

max.iter

the maximum number of iterations for the EM cycle; default is 5000

SE.est

whether to estimate SE for item parameters using the updated supplemented expectation maximization (USEM); default is FALSE

Value

a list containing the following objects:

ra

item discrimination parameters, a \(J \times K\) matrix

rb

item difficulty parameters, vector of length \(J\)

reta

variational parameters \(\eta(\xi)\), a \(N \times J\) matrix

reps

variational parameters \(\xi\), a \(N \times J\) matrix

rsigma

population variance-covariance matrix, a \(K \times K\) matrix

mu_i

mean parameter for each person, a \(K \times N\) matrix

sig_i

covariance matrix for each person, a \(K \times K \times N\) array

n

the number of iterations for the EM cycle

Q_mat

factor loading structure, a \(J \times K\) matrix

GIC

model fit index

AIC

model fit index

BIC

model fit index

SE

Standard errors of item parameters, a \(J \times (K+1)\) matrix where the last column includes SE estimates for item difficulty parameters

Author

Jiaying Xiao <jxiao6@uw.edu>

Examples

if (FALSE) { # \dontrun{
with(C2PL_data, C2PL_gvem(data, model))} # }