Stochastic GVEM for Confirmatory M3PL Analysis
Usage
C3PL_sgvem(
u,
indic,
samp = 50,
forgetrate = 0.51,
mu_b,
sigma2_b,
Alpha,
Beta,
max.iter = 5000
)
Arguments
- u
an \(N \times J\)
matrix
or adata.frame
that consists of binary responses of \(N\) individuals to \(J\) items. The missing values are coded asNA
- indic
a \(J \times K\)
matrix
or adata.frame
that describes the factor loading structure of \(J\) items to \(K\) factors. It consists of binary values where 0 refers to the item is irrelevant with this factor, 1 otherwise- samp
a subsample for each iteration; default is 50
- forgetrate
the forget rate for the stochastic algorithm. The value should be within the range from 0.5 to 1. Default is 0.51
- mu_b
the mean parameter for the prior distribution of item difficulty parameters
- sigma2_b
the variance parameter for the prior distribution of item difficulty parameters
- Alpha
the \(\alpha\) parameter for the prior distribution of guessing parameters
- Beta
the \(\beta\) parameter for the prior distribution of guessing parameters
- max.iter
the maximum number of iterations for the EM cycle; default is 5000
Value
a list containing the following objects:
- ra
item discrimination parameters, a \(J \times K\)
matrix
- rb
item difficulty parameters, vector of length \(J\)
- rc
item guessing parameters, vector of length \(J\)
- rs
variational parameters \(s\), a \(N \times J\) matrix
- reta
variational parameters \(\eta(\xi)\), a \(N \times J\) matrix
- reps
variational parameters \(\xi\), a \(N \times J\) matrix
- rsigma
population variance-covariance matrix, a \(K \times K\) matrix
- mu_i
mean parameter for each person, a \(K \times N\) matrix
- sig_i
covariance matrix for each person, a \(K \times K \times N\) array
- n
the number of iterations for the EM cycle
- Q_mat
factor loading structure, a \(J \times K\) matrix
- GIC
model fit index
- AIC
model fit index
- BIC
model fit index
References
Cho, A. E., Wang, C., Zhang, X., & Xu, G. (2021). Gaussian variational estimation for multidimensional item response theory. British Journal of Mathematical and Statistical Psychology, 74, 52-85.
Cho, A. E., Xiao, J., Wang, C., & Xu, G. (2022). Regularized Variational Estimation for Exploratory Item Factor Analysis. Psychometrika. https://doi.org/10.1007/s11336-022-09874-6
Examples
if (FALSE) { # \dontrun{
with(C3PL_data, C3PL_sgvem(data, model, samp=50, forgetrate=0.51, mu_b=0, sigma2_b=4, Alpha=10, Beta=40))} # }