Skip to contents

Stochastic GVEM for Confirmatory M3PL Analysis

Usage

C3PL_sgvem(
  u,
  indic,
  samp = 50,
  forgetrate = 0.51,
  mu_b,
  sigma2_b,
  Alpha,
  Beta,
  max.iter = 5000
)

Arguments

u

an \(N \times J\) matrix or a data.frame that consists of binary responses of \(N\) individuals to \(J\) items. The missing values are coded as NA

indic

a \(J \times K\) matrix or a data.frame that describes the factor loading structure of \(J\) items to \(K\) factors. It consists of binary values where 0 refers to the item is irrelevant with this factor, 1 otherwise

samp

a subsample for each iteration; default is 50

forgetrate

the forget rate for the stochastic algorithm. The value should be within the range from 0.5 to 1. Default is 0.51

mu_b

the mean parameter for the prior distribution of item difficulty parameters

sigma2_b

the variance parameter for the prior distribution of item difficulty parameters

Alpha

the \(\alpha\) parameter for the prior distribution of guessing parameters

Beta

the \(\beta\) parameter for the prior distribution of guessing parameters

max.iter

the maximum number of iterations for the EM cycle; default is 5000

Value

a list containing the following objects:

ra

item discrimination parameters, a \(J \times K\) matrix

rb

item difficulty parameters, vector of length \(J\)

rc

item guessing parameters, vector of length \(J\)

rs

variational parameters \(s\), a \(N \times J\) matrix

reta

variational parameters \(\eta(\xi)\), a \(N \times J\) matrix

reps

variational parameters \(\xi\), a \(N \times J\) matrix

rsigma

population variance-covariance matrix, a \(K \times K\) matrix

mu_i

mean parameter for each person, a \(K \times N\) matrix

sig_i

covariance matrix for each person, a \(K \times K \times N\) array

n

the number of iterations for the EM cycle

Q_mat

factor loading structure, a \(J \times K\) matrix

GIC

model fit index

AIC

model fit index

BIC

model fit index

References

Cho, A. E., Wang, C., Zhang, X., & Xu, G. (2021). Gaussian variational estimation for multidimensional item response theory. British Journal of Mathematical and Statistical Psychology, 74, 52-85.

Cho, A. E., Xiao, J., Wang, C., & Xu, G. (2022). Regularized Variational Estimation for Exploratory Item Factor Analysis. Psychometrika. https://doi.org/10.1007/s11336-022-09874-6

See also

Author

Jiaying Xiao <jxiao6@uw.edu>

Examples

if (FALSE) { # \dontrun{
with(C3PL_data, C3PL_sgvem(data, model, samp=50, forgetrate=0.51, mu_b=0, sigma2_b=4, Alpha=10, Beta=40))} # }