An importance weighted version of GVEM (i.e., IW-GVEM) can be implemented to correct the bias on item parameters under M2PL models
Usage
C2PL_iw(u, gvem_result, S = 10, M = 10, max.iter = 10)
E2PL_iw(u, gvem_result, S = 10, M = 10, max.iter = 10)
Arguments
- u
a \(N \times J\)
matrix
or adata.frame
that consists of binary responses of \(N\) individuals to \(J\) items. The missing values are coded asNA
- gvem_result
a list that includes exploratory or confirmatory GVEM results for M2PL models.
- S
the number of times to draw samples;default is 10
- M
the number of samples drawn from the variational distributions;default is 10
- max.iter
the maximum number of iterations for the EM cycle; default is 10
Value
a list containing the following objects:
- ra
item discrimination parameters estimated by GVEM, a \(J \times K\)
matrix
- rb
item difficulty parameters estimated by GVEM, vector of length \(J\)
- reta
variational parameters \(\eta(\xi)\), a \(N \times J\) matrix
- reps
variational parameters \(\xi\), a \(N \times J\) matrix
- rsigma
population variance-covariance matrix estimated by GVEM, a \(K \times K\) matrix
- mu_i
mean parameter for each person, a \(K \times N\) matrix
- sig_i
covariance matrix for each person, a \(K \times K \times N\) array
- n
the number of iterations for the EM cycle
- rk
factor loadings, a \(J \times K\)
matrix
, for exploratory analysis only- Q_mat
factor loading structure, a \(J \times K\) matrix
- GIC
model fit index
- AIC
model fit index
- BIC
model fit index
- SE
Standard errors of item parameters, a \(J \times (K+1)\) matrix where the last column includes SE estimates for item difficulty parameters, for confirmatory analysis only
- ur_a
item discrimination parameters before conducting the rotation, a \(J \times K\)
matrix
, for exploratory analysis only- new_a
item discrimination parameters estimated by IW-GVEM, a \(J \times K\)
matrix
- new_b
item difficulty parameters estimated by IW-GVEM, vector of length \(J\)
- new_Sigma_theta
population variance-covariance matrix estimated by IW-GVEM, a \(K \times K\) matrix
- best_lr
The learning rate used for importance sampling
- best_lb
The lower bound value for importance sampling
Examples
if (FALSE) { # \dontrun{
CFA_result <- with(C2PL_data, C2PL_gvem(data, model))
C2PL_iw(C2PL_data$data, CFA_result)} # }
if (FALSE) { # \dontrun{
EFA_result <- with(E2PL_data_C1, E2PL_gvem_lasso(data, model, constrain = constrain, non_pen = non_pen))
E2PL_iw(E2PL_data_C1$data, EFA_result)} # }