Skip to contents

GVEM Algorithm for the Graded Response Model

Usage

MGRM_gvem(
  data,
  model = matrix(1, ncol(data)),
  method = "GVEM",
  iter = 200,
  tol = 1e-04,
  S = 10,
  M = 10,
  MinDim = 0,
  MaxDim = 0,
  verbose = FALSE,
  EFA = FALSE
)

Arguments

data

An \(N\times J\) matrix of item responses where 0 is the minimal partial credit score (missing responses should be coded as NA)

model

A \(J\times K\) matrix of loading indicators (K is the Number of latent dimension)(all items load on the only dimension by default)

iter

Maximum number of iterations

tol

Termination criterion on numerical accuracy

S

Sample size for approximating the expected lower bound ('IWGVEM' only)

M

Sample size for approximating a tighter lower bound ('IWGVEM' only)

MinDim

Minimum num of possible dimensions ('EFA' only)

MaxDim

Maximum num of possible dimensions ('EFA' only)

verbose

Whether to show the progress

EFA

Whether to run EFA or CFA

criterion

Information criterion for model selection, one of 'GIC' (recommended), 'BIC', or 'AIC'

c

Constant for computing GIC

Value

An object of class vemirt_DIF, which is a list containing the following elements:

...$SIGMA

Person-level posterior covariance matrices

...$MU

Person-level posterior mean vectors

...$Sigma

Group-level covariance matrices

...$Mu

Group-level mean vectors

...$ksi1

Variational parameter 1

...$ksi2

Variational parameter 2

...$dim

Num of dimension between latent variables

...$a

Slopes

...$b

Intercepts

...$n2vlb

Bayesian Information Criterion: -2*ll+l0*log(N)

iter

Number(s) of iterations for initialization

Author

Yijun Cheng <chengxb@uw.edu>

Examples

if (FALSE) { # \dontrun{
with(MGRM_data, MGRM_gvem(data, method = "IWGVEM", model, EFA = FALSE))} # }