GVEM Algorithm for the Graded Response Model
Arguments
- data
An \(N\times J\) matrix of item responses where 0 is the minimal partial credit score (missing responses should be coded as
NA
)- model
A \(J\times K\) matrix of loading indicators (K is the Number of latent dimension)(all items load on the only dimension by default)
- iter
Maximum number of iterations
- tol
Termination criterion on numerical accuracy
- S
Sample size for approximating the expected lower bound (
'IWGVEM'
only)- M
Sample size for approximating a tighter lower bound (
'IWGVEM'
only)- MinDim
Minimum num of possible dimensions (
'EFA'
only)- MaxDim
Maximum num of possible dimensions (
'EFA'
only)- verbose
Whether to show the progress
- EFA
Whether to run EFA or CFA
- criterion
Information criterion for model selection, one of
'GIC'
(recommended),'BIC'
, or'AIC'
- c
Constant for computing GIC
Value
An object of class vemirt_DIF
, which is a list containing the following elements:
- ...$SIGMA
Person-level posterior covariance matrices
- ...$MU
Person-level posterior mean vectors
- ...$Sigma
Group-level covariance matrices
- ...$Mu
Group-level mean vectors
- ...$ksi1
Variational parameter 1
- ...$ksi2
Variational parameter 2
- ...$dim
Num of dimension between latent variables
- ...$a
Slopes
- ...$b
Intercepts
- ...$n2vlb
Bayesian Information Criterion:
-2*ll+l0*log(N)
- iter
Number(s) of iterations for initialization
Examples
if (FALSE) { # \dontrun{
with(MGRM_data, MGRM_gvem(data, method = "IWGVEM", model, EFA = FALSE))} # }