Skip to contents

GVEM Algorithm for the Generalized Partial Credit Model

Usage

MGPCM_gvem(
  data,
  model = matrix(1, nrow = J, ncol = 4),
  group = rep(1, nrow(data)),
  iter = 2000,
  eps = 1e-05,
  SE = FALSE,
  verbose = TRUE,
  EFA = FALSE
)

Arguments

data

An \(N\times J\) matrix of item responses where 0 is the minimal partial credit score (missing responses should be coded as NA)

model

A \(J\times K\) matrix of loading indicators (K is the Number of latent dimension)(all items load on the only dimension by default)

iter

Maximum number of iterations

eps

Termination criterion on numerical accuracy

SE

Whether to calculate the standard errors

verbose

Whether to show the progress

EFA

Whether to rotate the output

Value

An object of class vemirt_DIF, which is a list containing the following elements:

...$Sigma

Group-level covariance matrices

#'

...$MU

Person-level posterior mean vectors

...$a

Slopes for group 1

...$b

Intercepts for group 1

...$ll

Estimated lower bound of log-likelihood

Author

Yijun Cheng <chengxb@uw.edu>

Examples

if (FALSE) { # \dontrun{
with(MGPCM_data, MGPCM_gvem(data, model))} # }