GVEM Algorithm for the Generalized Partial Credit Model
Arguments
- data
An \(N\times J\) matrix of item responses where 0 is the minimal partial credit score (missing responses should be coded as
NA
)- model
A \(J\times K\) matrix of loading indicators (K is the Number of latent dimension)(all items load on the only dimension by default)
- iter
Maximum number of iterations
- eps
Termination criterion on numerical accuracy
- SE
Whether to calculate the standard errors
- verbose
Whether to show the progress
- EFA
Whether to rotate the output
Value
An object of class vemirt_DIF
, which is a list containing the following elements:
- ...$Sigma
Group-level covariance matrices
#'
- ...$MU
Person-level posterior mean vectors
- ...$a
Slopes for group 1
- ...$b
Intercepts for group 1
- ...$ll
Estimated lower bound of log-likelihood
Examples
if (FALSE) { # \dontrun{
with(MGPCM_data, MGPCM_gvem(data, model))} # }